Generation of Functional Insulin-Producing Cells from Neonatal Porcine Liver-Derived Cells by PDX1/VP16, BETA2/NeuroD and MafA

نویسندگان

  • Dong-Sik Ham
  • Juyoung Shin
  • Ji-Won Kim
  • Heon-Seok Park
  • Jae-Hyoung Cho
  • Kun-Ho Yoon
چکیده

Surrogate β-cells derived from stem cells are needed to cure type 1 diabetes, and neonatal liver cells may be an attractive alternative to stem cells for the generation of β-cells. In this study, we attempted to generate insulin-producing cells from neonatal porcine liver-derived cells using adenoviruses carrying three genes: pancreatic and duodenal homeobox factor1 (PDX1)/VP16, BETA2/NeuroD and v-maf musculo aponeurotic fibrosarcoma oncogene homolog A (MafA), which are all known to play critical roles in pancreatic development. Isolated neonatal porcine liver-derived cells were sequentially transduced with triple adenoviruses and grown in induction medium containing a high concentration of glucose, epidermal growth factors, nicotinamide and a low concentration of serum following the induction of aggregation for further maturation. We noted that the cells displayed a number of molecular characteristics of pancreatic β-cells, including expressing several transcription factors necessary for β-cell development and function. In addition, these cells synthesized and physiologically secreted insulin. Transplanting these differentiated cells into streptozotocin-induced immunodeficient diabetic mice led to the reversal of hyperglycemia, and more than 18% of the cells in the grafts expressed insulin at 6 weeks after transplantation. These data suggested that neonatal porcine liver-derived cells can be differentiated into functional insulin-producing cells under the culture conditions presented in this report and indicated that neonatal porcine liver-derived cells (NPLCs) might be useful as a potential source of cells for β-cell replacement therapy in efforts to cure type I diabetes.

منابع مشابه

Adenoviruses Expressing PDX-1, BETA2/NeuroD and MafA Induces the Transdifferentiation of Porcine Neonatal Pancreas Cell Clusters and Adult Pig Pancreatic Cells into Beta-Cells

BACKGROUND A limitation in the number of insulin-producing pancreatic beta-cells is a special feature of diabetes. The identification of alternative sources for the induction of insulin-producing surrogate beta-cells is a matter of profound importance. PDX-1/VP16, BETA2/NeuroD, and MafA overexpression have been shown to influence the differentiation and proliferation of pancreatic stem cells. H...

متن کامل

Generation of Insulin-Expressing Cells in Mouse Small Intestine by Pdx1, MafA, and BETA2/NeuroD

BACKGROUND To develop surrogate insulin-producing cells for diabetes therapy, adult stem cells have been identified in various tissues and studied for their conversion into β-cells. Pancreatic progenitor cells are derived from the endodermal epithelium and formed in a manner similar to gut progenitor cells. Here, we generated insulin-producing cells from the intestinal epithelial cells that ind...

متن کامل

TAT-Mediated Transduction of MafA Protein In Utero Results in Enhanced Pancreatic Insulin Expression and Changes in Islet Morphology

Alongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments set the stage for the development of n...

متن کامل

Generation of Insulin-Producing Cells from the Mouse Liver Using β Cell-Related Gene Transfer Including Mafa and Mafb

Recent studies on the large Maf transcription factors have shown that Mafb and Mafa have respective and distinctive roles in β-cell development and maturation. However, whether this difference in roles is due to the timing of the gene expression (roughly, expression of Mafb before birth and of Mafa after birth) or to the specific function of each gene is unclear. Our aim was to examine the func...

متن کامل

PDX-1 and MafA: Key Transcription Factors in Pancreas

Pancreatic and duodenal homeobox factor-1 (PDX-1) plays a crucial role in pancreas development, β-cell differentiation and in maintaining normal β-cell function by regulating several β-cell-related genes including insulin. PDX-1 has potency to induce insulin-producing cells in non β-cells in various tissues such as pancreas and liver and PDX-1-VP16 fusion protein more efficiently induces insuli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013